Separation and SERS detection of dye mixture on silver nanoparticles

By Prahlad Ramesh

Under the Guidance of

Prof S. Venugopal

Department of Chemical Engineering, IISc

SERS Detection

- Surface Enhanced Raman Spectroscopy (SERS) is a capable technique for rapid, on-field detection of molecules
- Pesticides are mixed with surfactants and Preservatives before applying them on crops and fruits.
- So if the active ingredient is not separated from the additives the spectra we get could be inconclusive
- As a result we decided to test out the separation techniques on some common dyes like R6G, Metanil Yellow(MY) and Methylene Blue(MB)

Fabrication of Silver Nanoparticles on Kimwipe tissue

Print alternate layers of AgNO3(1M) & KCL(2M)

Expose Under Halogen Light for 10 mins

Develop using D 76 for 10 mins

Separation and detection of 2 dye mixture (1mM R6G +

MY)

Separation of 1 mm mixture of R6G and metanil Yellow using chromatography paper (Solvent is 70% acetonitrile)

Transference of dye from chromatography paper to silver substrate using pure acetonitrile

Separation of 3 dye mixture (R6G+MY+MB)

► A mixture of 1mM R6G, MY and MB of equal vol (1ml each) was prepared

Solvents Used:

- Chloroform
- Hexane
- Toulene
- IPA
- Methanol
- Ethanol
- DI water
- Di-chloromethane

Decided on a two step using various combination of Methanol & Ethanol:

- 1. Use 75% Methanol + 25% Ethanol Combination to separate MB from the mixture
- 2. Use 60% Methanol + 40% Ethanol solution to separate MY from R6G

Detection Process

Solvent Used : Acetonitrile

R6G

Rhodamine 6G (R6G) dye (616 cm-1peak)

Transferred R6G

Metanil Yellow

Different peaks in the SERS Spectra: 1193 cm-1 & 1437 cm-1 (v(N=N)) peaks 1147 cm-1 (v(C-Nazo) stretching) 1406 cm-1 (S=O stretching)

Dropcasted MY on silver nanoparticle
Integrated area = 10697.73801

Intensity

Transferred MY

Methylene Blue

Dropcasted MB on silver nanoparticle Integrated Area = 33374.7813

Transferred MB

Conclusion

- Separation, Transference and SERS detection of Dyes is possible and yield positive results
- Current process yields positive results but only for mixtures at higher concentration as they are visible to the naked eye
- Concentration process needs to be mechanized.

THANK YOU