Project Presentation

Wet Impregnation

Wet Impregnation	Incipier Impreg
More than pore volume (excess liquid)	Exactly eq
Metal precursor soaks and diffuses	Precise cc
Easier to handle but less precise metal loading	More contro good know p

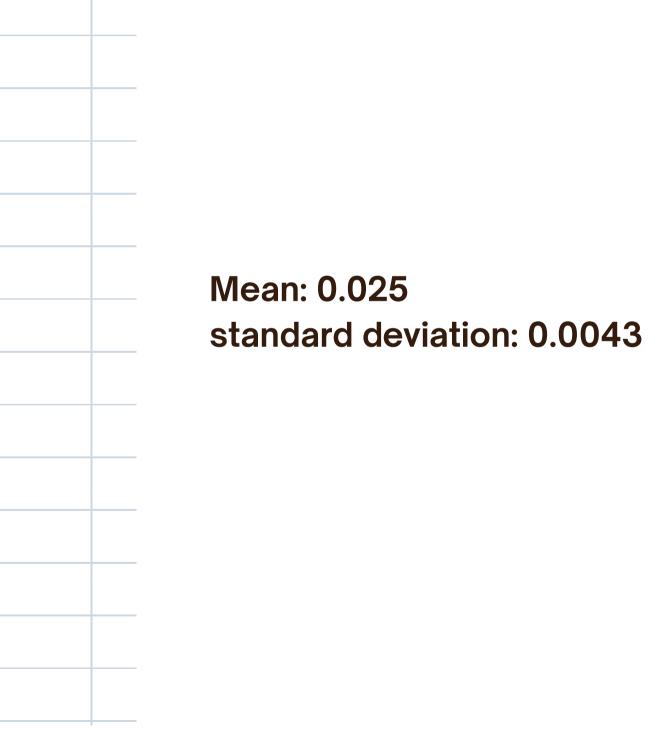
ent Wetness gnation (IWI)

equal to total pore volume

control over metal loading

trolled, but requires owledge of support porosity

The amount of water retained within the porous structure of the beads was quantified to determine pore-filling capacity :


figure: beads impregnated in 50 ul ii) beads immersed in 200ul

Two conditions were tested using 0.5 g of beads: one with 200μ L of water and another with 50μ L. The volume of water retained within the beads' pores was estimated by comparing the remaining free water after contact.

For 200uL samples : (IVI)

Three samples, each containing 0.5 g of beads, were tested using 200 µL of water. The beads were immersed in water for 30 minutes. After the incubation period, the remaining water was removed using a pipette and weighed. The difference between the initial and final water weight was used to determine the amount of water taken into the pores of the beads.

liq amoun	t :200ul					
viel wt(g)	beads wt(total intial	final wt(g)	difference	(g)	
3.52	0.5024	4.0224	4.05	0.0276		
3.48	0.503	3.983	4.003	0.02		
3.6279	0.5006	4.1285	4.1557	0.0272		
			Std deviat	0.004277	0.0043	
			average	0.024933	0.025	
for 1 g of l	peads = 0.0	050				
density =	1000					
g to ul	25	ul				

For 50 uL samples

without removal of water

For 50uL samples : (Wet Impregnation)

Without removal of water

viel wt(g)	beads wt(total intial	final wt(g)	difference	(g)
3.873	0.5052	4.3782	4.47	0.0918	
3.517	0.5028	4.0198	4.1132	0.0934	
3.6014	0.5022	4.1036	4.2	0.0964	
mean	0.093867				
std deviati	on	0.002335			

Mean: 0.0939 standard deviation: 0.0023

For 50uL samples :

Removal of water

after wate	r removal	difference	9	
4.4		0.0218		
4.05		0.0302		
4.1302		0.0266		
mean	0.0262			
std deviati	on	0.004214		

Mean: 0.0262 standard deviation: 0.0042 Samples

- Surface cleaned with HNO₃ and HNO₃ Used as Substitute for AgNO₃
- Surface cleaned with HNO₃
- No Pre-cleaning of Surface Prior to Impregnation

Sample 1

Surface cleaned with HNO₃ and HNO₃ Used as Substitute for AgNO₃

1) Removal of contaminants & surface impurities

- α-Alumina is chemically inert, but surface layers (oxides, adsorbed ions, organic residues) can impede catalyst loading or ion exchange.
- Nitric acid leaches away these layers, exposing fresh, reactive alumina surfaces.

2) This acidic pre-treatment modifies the surface, enhancing adhesion and dispersion of metal or halide precursors (e.g., AgBr, AgI).

3) Demonstrated enhancement in adsorption performance

Facile method to synthesize efficient adsorbent from alumina by nitric acid activation: Batch scale defluoridation, kinetics, isotherm studies and implementation on industrial wastewater treatment Usha Kumari₁, Sushanta K Behera₂, Hammad Siddiqi₂, B C Meikap₃ https://pubmed.ncbi.nlm.nih.gov/31376661/

Coating on Alpha-Alumina Beads – Procedure

- 1 g of alpha-alumina beads was taken.
- Cleaned using $50 \mu L$ of HNO₃.
- Beads were impregnated for 30 minutes.
- Washed using a sonicator.
- 50µL of KBr was added.
- Instead of AgNO₃, HNO₃ was used again.
- Beads were exposed under halogen lamp
- washed in DI water

Fig: after impregmenting KBR/KI (50ul)

Fig: after impregmenting HNO3

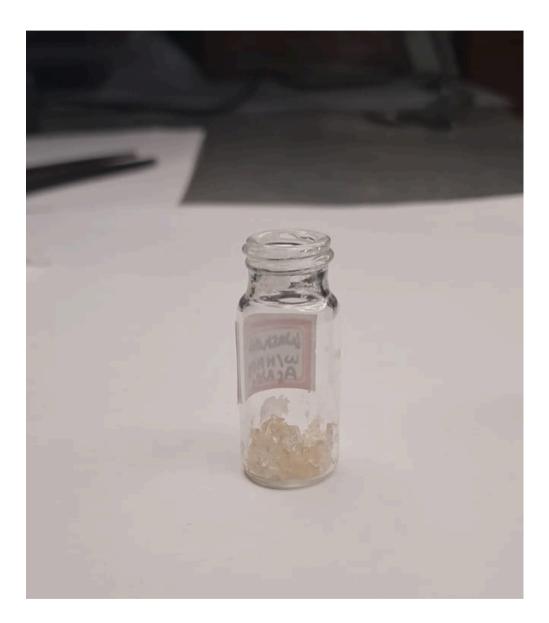
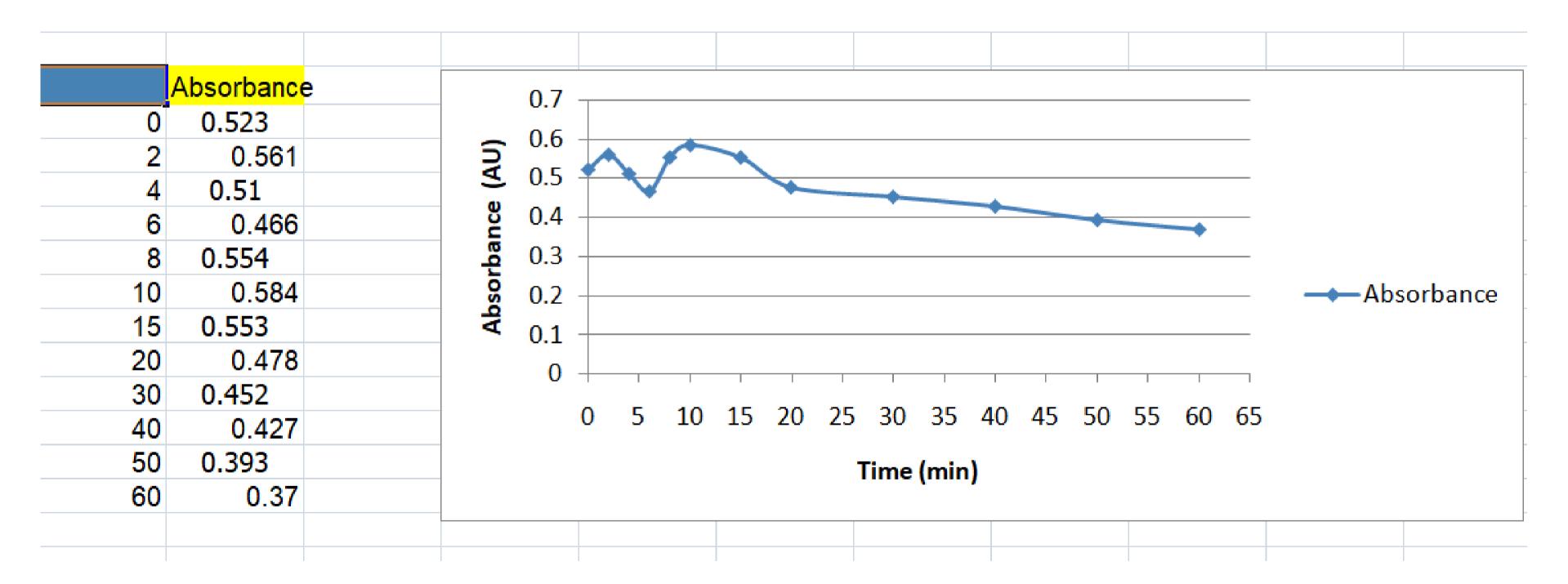


Fig: post exposure and development


Sodium Thiosulphate and Potassium Ferricyanide to Test the Catalyst

- Sodium thiosulphate is a reducing agent, and potassium ferricyanide is an oxidizing agent.
- Normally, their reaction is very slow.
- If our catalyst is active, it speeds up this redox reaction.
- During the reaction, ferricyanide gets reduced to ferrocyanide.
- A clear color change shows that the catalyst is working.

Fig: Sample on top of magnetic stirrier at 350rpm, 40C

UV-Vis Spectrophotometer Result:

Sample 2

Surface cleaned with HNO₃

Silver Coating on Alpha-Alumina Beads – Procedure

- 1 g of alpha-alumina beads was taken.
- Cleaned using $50 \mu L$ of HNO₃.
- Beads were impregnated for 30 minutes.
- Washed using a sonicator.
- 50 µL of KBr was added.
- AgNO₃, was used
- Beads were exposed under halogen lamp 10 mins
- Developed and washed in DI



Fig: pretreatment with HNO3

Fig: impregmenting in AgNo3

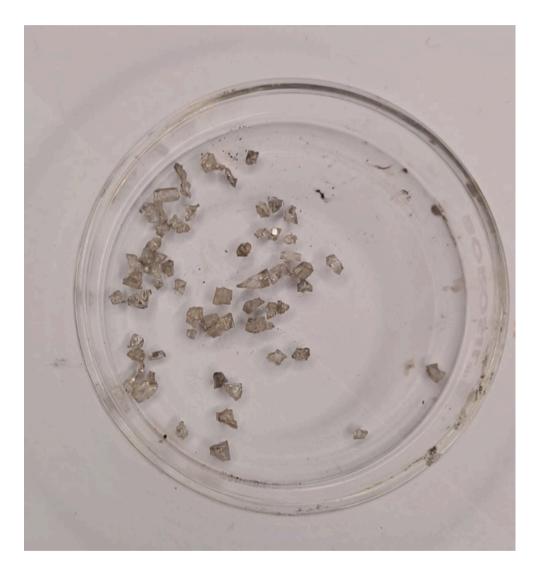

Fig: post exposure of halogen lamp

Fig: sample after impregmenting in developer solution

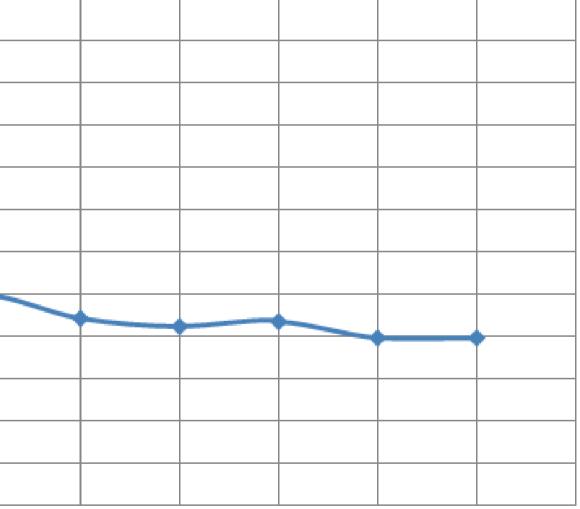

Fig: Sample was subsequently immersed in deionized (DI) water for post-treatment evaluation

Fig: sample dried at 90 C

UV-Vis Spectrophotometer Result:

	ABSORBA	NCE (AU)		0.6	_				
0	0.564			0.55	\mathbf{k}				
2	0.431			0.5	+				
4	0.344		_	0.45					
6	0.306		AU	0.4					
8	0.308		Absorbance (AU)	0.35					
10	0.304		• au	0.3			-		
15	0.235		orb	0.25					
20	0.249		۸bs	0.2					
25	0.222		4	0.15					
30	0.212			0.1					
35	0.218		 _	0.05					
40	0.199			0					
45	0.199		 -		0	5	10	15	20
			 -		0	5	10	15	20
			-						Т

25 30 35 40 45 50

Time (mins)

Sample 3

No Pre-cleaning of Surface Prior to Impregnation

Silver Coating on Alpha-Alumina Beads – Procedure

- 1 g of alpha-alumina beads was taken.
- Beads were impregnated for 30 minutes in KBr/KI(95:5) then dried
- 50µL of AgNo3 was added.
- Beads were exposed under halogen lamp 10 mins
- Developed and washed in DI

Fig: after impregmenting KBr/KI

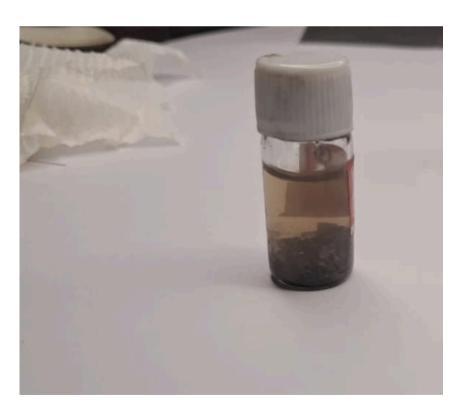


Fig :Sample was subsequently immersed in deionized (DI) water for posttreatment evaluation

Fig: after impregmenting AgNO3

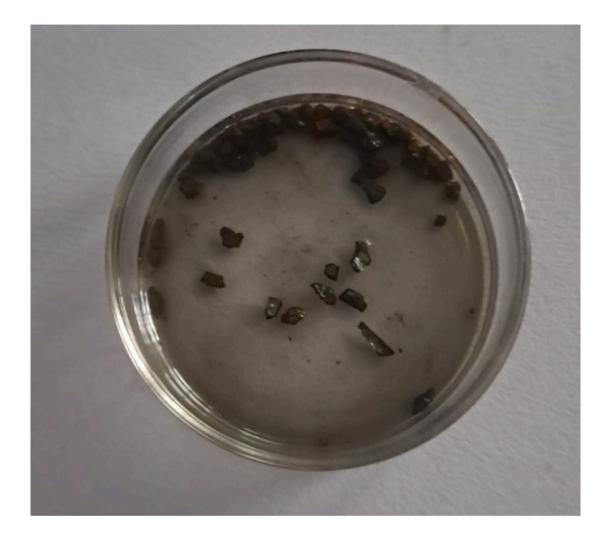
Fig: Sample dried at 90 C

Filling Aluminum Pores with Silver

Sample	Pretreatment	KBr:KI Soaking	AgNO₃ Soaking	Halogen Lamp	Developer	Ag came out in Developer	Ag came out in DI Water	Remarks
1	None	20 mins (1 mL)	20 mins (1 mL)	10 mins	15 mins	Minimal	Minimal	Double coating used, beads were turned grey with coating
2	KOH (20 mins)	20 mins (1 mL)	20 mins (1 mL)	10 mins	15 mins	Minimal	Minimal	Double coating used, beads were turned grey
3	None	Overnight (2–3 mL)	2 hrs + 20 mins (2–3 mL)	10 mins	15 mins	Almost all Ag came out	Almost all Ag came out	Over-soaking weakened binding
4	HNO3 (30mins)	30mins (0.5ml)	30mins (0.5ml)	10mins	15mins	Ag particles were seen in the solution	Ag particles were seen in the DI water	Slight change in colour of the beads
5	HNO3 (30mins) 1:1 ratio	30mins (0.5ml)	30mins (0.5ml)	UV LAMP	15mins	Ag particles were seen in the solution	Ag particles were seen in the DI water	

sample 1

sample 2


sample 3

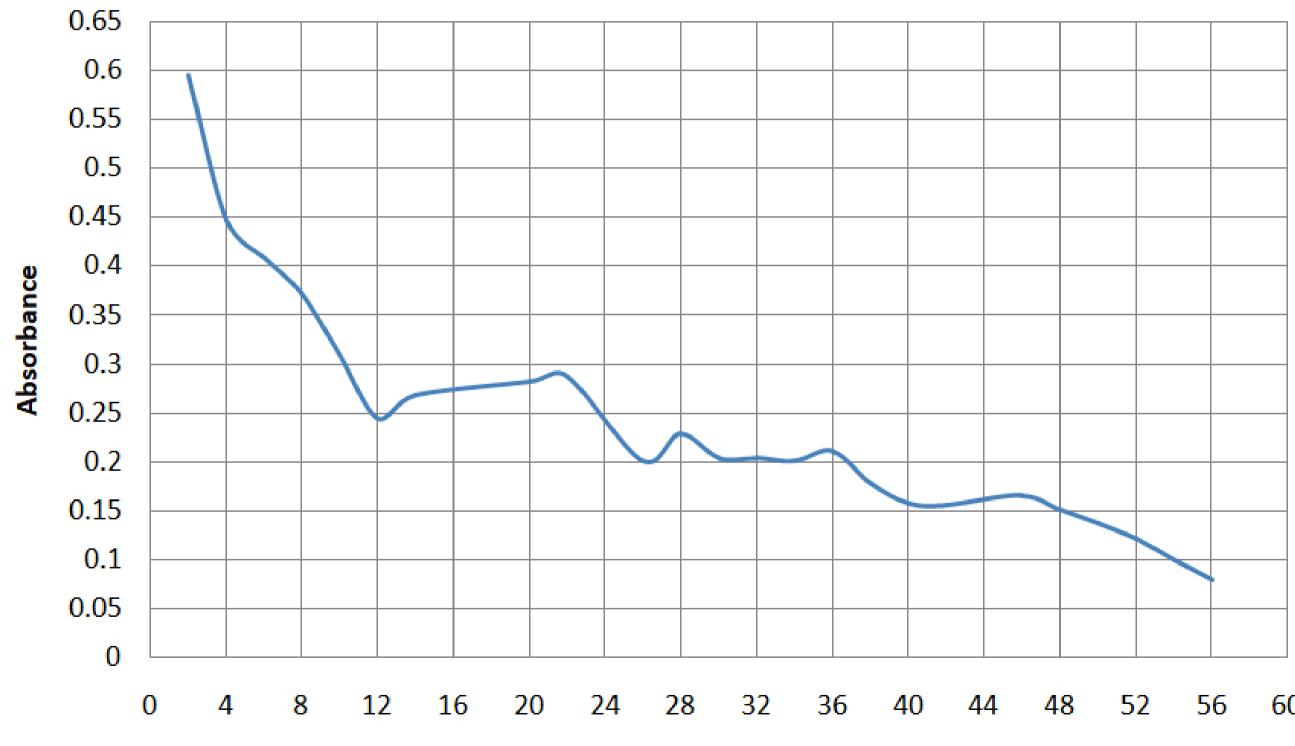
sample 4

sample 5

sample 1

Sample 1 was subsequently immersed in deionized (DI) water for post-treatment evaluation

sample 2


Sample 2 was subsequently immersed in deionized (DI) water for post-treatment evaluation

sample 3

Sample 3 was subsequently immersed in developer solution as a result significant amount of silver were getting dispersed in water

UV-Vis Spectrophotometer Result: KOH sample

Time

60